
- Home
-
Products
-
- Semiconductor crystal
-
Single crystal substrate
-
Multifunctional single crystal substrate
- Barium titanate (BaTiO3)
- Strontium titanate (SrTiO3)
- Iron doped strontium titanate (Fe:SrTiO3)
- Neodymium doped strontium titanate (Nd:SrTiO3)
- Aluminium oxide (Al2O3)
- Potassium tantalum oxide (KTaO3)
- Lead magnesium niobate–lead titanate (PMN-PT)
- Magnesium oxide (MgO)
- Magnesium aluminate spinel (MgAl2O4)
- Lithium aluminate (LiAlO2)
- Lanthanu m aluminate (LaAlO3)
- Lanthanu m strontium aluminate (LaSrAlO4)
- (La,Sr)(Al,Ta)O3
- Neodymium gallate (NdGaO3)
- Terbium gallium garnet (TGG)
- Gadolinium gallium garnet (GGG)
- Sodium chloride (NaCl)
- Potassium bromide (KBr)
- Potassium chloride (KCl)
-
Multifunctional single crystal substrate
-
Functional crystal
- Optical window
- Scintillation crystal
-
Laser crystal
- Rare earth doped lithium yttrium fluoride (RE:LiYF4)
- Rare earth doped lithium lutetium fluoride (RE:LiLuF4)
- Ytterbium doped yttrium aluminium garnet (Yb:YAG)
- Neodymium doped yttrium aluminium garnet (Nd:YAG)
- Erbium doped yttrium aluminium garnet (Er:YAG)
- Holmium doped yttrium aluminium garnet (Ho:YAG)
- Nd,Yb,Er,Tm,Ho,Cr,Lu Infrared laser crystal
- N* crystal
- Metal single crystal
- Material testing analysis
- Material processing
- Scientific research equipment
-
-
Epitaxial Wafer/Films
-
Inorganic epitaxial wafer/film
- Gallium Oxide epitaxial wafer (Ga2O3)
- ε - Gallium Oxide (Ga2O3)
- Platinum/Titanium/Silicon Dioxide/Silicon epitacial wafer (Pt/Ti/SiO2/Si)
- Lithium niobate thin film epitaxial wafer
- Lithium tantalate thin film epitaxial wafer
- InGaAs epitaxial wafer
- Gallium Nitride(GaN) epitaxial wafer
- Epitaxial silicon wafer
- Yttrium Iron Garnet(YIG) epitaxial wafers
- Fullerenes&Fullerols
-
Inorganic epitaxial wafer/film
- Functional Glass
- Fine Ceramics
-
2-D material
- 2-D crystal
-
Layered transition metal compound
- Iron chloride (FeCl2)
- Niobium sulfide (NbS3)
- Gallium telluride iodide (GaTeI)
- Indium selenide (InSe)
- Copper indium phosphide sulfide (CuInP2S6)
- Tungsten sulfide selenide (WSSe)
- Iron germanium telluride (Fe3GeTe2)
- Nickel iodide (NiI2)
- Iron phosphorus sulfide (FePS3)
- Manganese phosphorus selenide (MnPSe3)
- Manganese phosphorus sulfide (MnPS3)
- Interface thermal conductive materials
-
Epitaxial Wafer/Films
-
-
High-purity element
- Non-metallic
-
Metal
- Scandium (Sc)
- Titanium (Ti)
- Indium (In)
- Gallium (Ga)
- Bismuth (Bi)
- Tin (Sn)
- Zinc (Zn)
- Cadmium (Cd)
- Antimony (Sb)
- Copper (Cu)
- Nickel (Ni)
- Molybdenum (Mo)
- Aluminium (Al)
- Rhenium (Re)
- Hafnium (Hf)
- Vanadium (V)
- Chromium (Cr)
- Iron (Fe)
- Cobalt (Co)
- Zirconium (Zr)
- Niobium (Nb)
- Tungsten (W)
- Germanium (Ge)
- Iron(Fe)
-
Compound raw materials
-
Oxide
- Tungsten Trioxide (WO3)
- Hafnium Dioxide (HfO2)
- Ytterbium Oxide (Yb2O3)
- Erbium Oxide (Er2O3)
- Lanthanu m Oxide (La2O3)
- Cerium Dioxide (CeO2)
- Tin Dioxide (SnO2)
- Niobium Oxide (Nb2O3)
- Zirconium Dioxide (ZrO2)
- Zinc Oxide (ZnO)
- Copper Oxide (CuO)
- Magnetite (Fe3O4)
- Titanium Dioxide (TiO2)
- Samarium (III) oxide (Sm2O3)
- Silicon Dioxide (SiO2)
- Aluminum Oxide (Al2O3)
- Gallium Oxide Ga2O3(Powder)
- Sulfide
- Fluoride
- Nitride
- Carbide
-
Halide
- Gallium Chloride (GaCl3)
- Indium Chloride (InCl3)
- Aluminum Chloride (AlCl3)
- Bismuth Chloride (BiCl3)
- Cadmium Chloride (CdCl2)
- Chromium Chloride (CrCl2)
- Chromium Chloride Hydrate (CrCl2(H2O)n)
- Copper Chloride (CuCl)
- Copper Chloride II (CuCl2)
- Cesium Chloride (CsCl)
- Europium Chloride (EuCl3)
- Europium Chloride Hydrate (EuCl3.xH2O)
- Magnesium Chloride (MgCl2)
- Sodium Chloride (NaCl)
- Nickel Chloride (NiCl2)
- Indium Chloride (InCl3)
- Indium Nitrate Hydrate (In(NO3).xH2O)
- Rubidium Chloride (RbCl3)
- Antimony Chloride (SbCl3)
- Samarium Chloride (SmCl3)
- Samarium Chloride Hydrate (SmCl3.xH2O)
- Scandium Chloride (ScCl3)
- Tellurium Chloride (TeCl3)
- Tantalum Chloride (TaCl5)
- Tungsten Chloride (WCl6)
- Aluminum Bromide (AlBr3)
- Barium Bromide (BaBr2)
- Cobalt Bromide (CoBr2)
- Cadmium Bromide (CdBr2)
- Gallium Bromide (GaBr3)
- Gallium Bromide Hydrate (GaBr3.xH2O)
- Nickel Bromide (NiBr2)
- Potassium Bromide (KBr)
- Lead Bromide (PbBr2)
- Zirconium Bromide (ZrBr2)
- Bismuth Bromide (BiBr4)
- Bismuth Iodide (BiI3)
- Calcium Iodide (CaI2)
- Gadolinium Iodide (GdI2)
- Cobalt Iodide (CoI2)
- Cesium Iodide (CsI)
- Europium Iodide (EuI2)
- Lithium Iodide (LiI)
- Lithium Iodide Hydrate (LiI.xH2O)
- Gallium Iodide (GaI3)
- Gadolinium Iodide (GdI3)
- Indium Iodide (InI3)
- Potassium Iodide (KI)
- Lanthanu m Iodide (LaI3)
- Lutetium Iodide (LuI3)
- Magnesium Iodide (MgI2)
- Sodium Iodide (NaI)
-
Oxide
-
High-purity element
-
-
Sputtering Target
-
Metal target material
- Gold (Au(T))
- Silver (Ag(T))
- Platinum (Pt(T))
- Palladium (Pd(T))
- Ruthenium (Ru(T))
- Iridium (Ir(T))
- Aluminium (Al(T))
- Copper (Cu(T))
- Titanium (Ti(T))
- Nickel (Ni(T))
- Chromium (Cr(T))
- Cobalt (Co(T))
- Iron (Fe(T))
- Manganese (Mn(T))
- Zinc (Zn(T))
- Vanadium (V(T))
- Tungsten (W(T))
- Hafnium (Hf(T))
- Niobium (Nb(T))
- Molybdenum (Mo(T))
- Lanthanu m (La (T))
- Cerium (Ce (T))
- Praseodymium (Pr (T))
- Neodymium (Nd (T))
- Samarium (Sm (T))
- Europium (Eu (T))
- Gadolinium (Gd (T))
- Terbium (Tb (T))
- Dysprosium (Dy (T))
- Holmium (Ho (T))
- Erbium (Er (T))
- Thulium (Tm (T))
- Ytterbium (Yb (T))
- Lutetium (Lu (T))
- Alloy target material
- Semiconductor target material
-
Oxide target material
- Aluminum Oxide (Al2O3(T))
- Silicon Dioxide (SiO2(T))
- Titanium Dioxide (TiO2(T))
- Chromium Oxide (Cr2O3(T))
- Nickel Oxide (NiO(T))
- Copper Oxide (CuO(T))
- Zinc Oxide (ZnO(T))
- Zirconium Oxide (ZrO2(T))
- Indium Tin Oxide (ITO(T))
- Indium Zinc Oxide (IZO(T))
- Aluminum Doped Zinc Oxide (AZO(T))
- Cerium Oxide (CeO2(T))
- Tungsten Trioxide (WO3(T))
- Hafnium Oxide (HfO2(T))
- Indium Gallium Zinc Oxide (IGZO(T))
- Nitride target material
- Sulfide target material
-
Antimony tellurium selenium boron target material
- Magnesium Boride (MgB2(T))
- Lanthanu m Hexaboride (LaB6(T))
- Titanium Diboride (TiB2(T))
- Zinc Selenide (ZnSe(T))
- Zinc Antimonide (Zn4Sb3(T))
- Cadmium Selenide (CdSe(T))
- Indium Telluride (In2Te3(T))
- Tin Selenide (SnSe(T))
- Germanium Antimonide (GeSb(T))
- Antimony Selenide (Sb2Se3(T))
- Antimony Telluride (Sb2Te3(T))
- Bismuth Telluride (Bi2Te3(T))
-
Metal target material
-
Sputtering Target
-
- Services
- Media
- Partner
- Contact Us
- About
Aluminum Nitride (AlN) Single Crystals, Thin Films, and Devices Materials Science, Applications, and Global Trends
Aluminum Nitride (AlN) Single Crystals, Thin Films, and Devices: Materials Science, Applications, and Global Trends
Aluminum nitride (AlN) has emerged as a critical material in the fields of microelectronics, optoelectronics, and power devices due to its unique combination of physical properties, including high thermal conductivity, wide bandgap, excellent piezoelectric performance, and chemical stability. This review article provides an in-depth overview of AlN single crystals and thin films, highlighting their structural characteristics, fabrication techniques, and performance metrics. We further explore their integration into devices such as UV LEDs, high-frequency resonators, and high-power electronics. The article concludes by analyzing current international R&D trends and the academic and commercial prospects for AlN-based technologies.
1. Introduction
Aluminum nitride (AlN), a III-V compound semiconductor, is characterized by its hexagonal wurtzite crystal structure and a wide direct bandgap (~6.2 eV), placing it among the most promising ultrawide-bandgap (UWBG) materials. Its unique combination of thermal, optical, electrical, and mechanical properties makes it a candidate material for next-generation electronic and photonic devices.
2. Material Properties of AlN
2.1 Structural and Physical Characteristics
Property | Value / Characteristic |
---|---|
Crystal structure | Wurtzite (hexagonal) |
Bandgap | ~6.2 eV (direct) |
Dielectric constant | ε_r ≈ 8.5 |
Thermal conductivity | 285 W/m·K (bulk) |
Piezoelectric coefficient (d33) | ~5.1 pC/N |
Melting point | ~2200°C |
Lattice constants (a, c) | a = 3.112 Å, c = 4.982 Å |
Hardness | ~11 GPa |
AlN's thermal conductivity is second only to diamond and SiC among common wide-bandgap semiconductors. Its intrinsic piezoelectricity makes it ideal for micro-electromechanical systems (MEMS) and surface acoustic wave (SAW) devices.
2.2 Crystal Growth and Thin Film Deposition
Single Crystals: Typically grown using physical vapor transport (PVT) or high-temperature ammonothermal methods. Challenges remain in producing large-diameter, low-defect bulk AlN.
Thin Films: Techniques include:
MOCVD (metal-organic chemical vapor deposition)
MBE (molecular beam epitaxy)
Sputtering (especially for piezoelectric films)
Epitaxial growth on substrates like sapphire, SiC, and Si is common, although lattice mismatch introduces strain and dislocation density, which influence device performance.
3. Applications of AlN
3.1 Optoelectronics
Deep UV LEDs and Lasers: AlN and AlGaN alloys enable emission at wavelengths < 250 nm, critical for sterilization, biochemical sensing, and lithography.
UV Photodetectors: AlN serves as both a barrier and active layer in solar-blind photodetectors.
3.2 High-Frequency & Power Electronics
RF Filters and Resonators: AlN thin films in bulk acoustic wave (BAW) and film bulk acoustic resonators (FBARs) are key for 5G/6G mobile communications.
Power Electronics: As a UWBG material, AlN shows promise for ultra-high-voltage transistors, though doping control and substrate quality are challenges.
3.3 Thermal Management
AlN Ceramics: Used in heat spreaders and substrates for LEDs and high-power devices due to their high thermal conductivity and electrical insulation.
4. International Research and Development Trends
4.1 Asia
Japan: Pioneers in high-purity AlN crystal growth (e.g., Tokuyama, Dowa), with deep integration into UV LED and SAW device markets.
China: Rapid growth in AlN thin film production and UV-C LED development, with state-supported R&D in GaN-on-AlN epitaxy.
4.2 Europe
Strong emphasis on UWBG electronics (e.g., Horizon EU-funded projects), with collaborations in AlN-based power and photonic integration.
4.3 United States
DARPA and ARPA-E initiatives** support AlN for high-performance RF and defense applications. Key players include academic groups and national labs (e.g., Sandia, MIT).
5. Challenges and Opportunities
Challenge | Description |
---|---|
Bulk AlN crystal growth | High cost, slow growth rate, dislocation defects |
Doping control | Particularly p-type, limiting full transistor designs |
Integration with Si and GaN platforms | Lattice and thermal expansion mismatch |
Market standardization | Lack of unified wafer and epi quality benchmarks |
Despite these, advances in ammonothermal growth, selective area epitaxy, and interface engineering are accelerating progress.
6. Academic and Market Prospects
6.1 Academic
AlN research is pivotal in multiple frontiers:
UWBG materials physics
Strain-engineered piezoelectric heterostructures
Quantum sensing and integrated photonics in the UV region
6.2 Market
AlN substrate market: Projected CAGR > 10% over the next 5 years due to demand from RF and UV-C sectors.
Deep UV LEDs: Market growth driven by medical sterilization, water purification, and wearable UV sensors.
MEMS/BAW: AlN remains the standard for RF filtering, especially in mobile and automotive radar systems.
7. Conclusion
Aluminum nitride has matured from a niche research material to a key enabler of multiple high-performance technologies. With ongoing innovations in crystal growth, thin film deposition, and device integration, AlN is poised to play a central role in the next generation of electronics and photonics. Its wide bandgap, thermal robustness, and strong piezoelectric properties uniquely position it in the global race for faster, cleaner, and more efficient technologies.